相关性分析旨在分析两组数据之间是否相互影响,彼此是否独立的变动。SPSS内部提供了多种分析数据相关性的方法:卡方检验(Chi-SquareTest),Pearson相关系数计算,Spearman相关系数计算和Kendall的tau-b(K)相关系数计算。
这四种分析方法适用于不同的数据类型,下面向大家介绍常用的SPSS相关性分析方法。
1.卡方检验(Chi-SquareTest) 卡方检验(Chi-SquareTest)是由Pearson提出的一种统计方法,在一定的置信水平和自由度下,通过比较卡方统计量和卡方分布函数概率值,判断实际概率与期望概率是否吻合,进而分析两个分类变量的相关性。 卡方检验(Chi-SquareTest)适用于不服从正态分布的数据,两组变量是无序的。使用SPSS进行卡方检验的操作方法,大家可以登录SPSS中文网站进行学习,这里仅作原理性的介绍。如图1是某种药物单独使用和药物与放疗同时使用时,治疗是否有效的卡方检验结果。
图1某地某种疾病发病人数统计 个案处理摘要显示了有效数据和无效数据的数量。VAR00001*VAR00002交叉表显示各变量对应的频数,VAR00001列1代表单独使用药物,2代表药物与放疗同时使用,VAR00002行1代表有疗效的人数,2代表无疗效的人数。 行列变量为各为二组,自由度为(2-1)×(2-1)=1,Pearsonχ2值为22.475,显著性数值为0.000小于0.05,有显著性差异,不能接受无关假设,即单独使用药物与药物放疗同时进行有显著性差异。
2.Pearson相关系数计算 Pearson相关系数用于评估两组数据是否符合线性关系,不能用于符合曲线关系的数据,线性相关越强,Pearson相关系数就越接近1(线性递增)或-1(线性递减)。图2为一组数据的线性相关性检验,可以看出,Peason相关系数0.984,表明两者有较强的线性相关性,一般认为<0.3无相关性,0.3~0.7弱相关性,>0.7较强的相关性。图2Pearson检验结果 3.Spearman相关系数计算 Spearman相关系数适用于不满足线性关系,且不满足正态分布的数据,如图3所示,实际这是两组随机产生的数据,用Spearman相关系数计算时,结果为0.257,<0.3无相关性,与Pearson相关系数类似,<0.3不相关,0.3~0.7为弱相关,>0.7为强相关。
图3Spearman相关系数计算 4.Kendall的tau-b(K)相关系数计算 进行Kendall的tau-b(K)相关分析,需要满足下列3个条件: 1.两个变量是有序分类变量; 2.两个变量相对应的研究对象是一定的。 例如调查工资与学历之间的关系,两个变量学历和收入都是等级变量,符合条件1;两个变量均对应同一研究对象:一个区域内的所有工作的成年人。符合条件2。
收入等级分别为1高收入,2中收入,3低收入,学历等级分别为1高学历,2中等学历,3低学历。结果分析如图4所示。相关系数为0.480,有弱的相关性。图4Kendalltau-b系数计算 对于不同种类的数据,应采用不同的统计方法进行相关性分析,SPSS内置了丰富的统计计算功能,可以充分满足不同统计数据的使用需求。
怎样用spss分析这两组数据的相关性?1、打开SPSS软件,输入两列数据,如下图所示;2、用鼠标在工具栏上一次点击“分析”----”相关”----“双变量”,如下图所示;3、进入要分析的变量,将两个变量都选定,相关系数选择Pearson,显著性检验选择双侧检验,标记显著性相关,如下图所示;4、选择其他相关需要,如均值与标准差,缺失值的选择,然后点击继续,如下图所示;5、在bootstrap菜单中打勾,置信区间选择百分位,抽样选择简单,然后点击确定,如下图所示;6、等待软件分析完成后就可以得到描述性分析和相关性分析的数据了,如下图所示。
如何使用spss做相关性分析SPSS作为简单实用的数据分析软件,那么如何使用SPSS做相关性分析?下面一起来看看。 1、 电脑安装SPSS软件包,最好使用最新版本,功能比较齐全。
2、 打开SPSS软件,导入你需要分析的数据,这里以excel数据为例子。
以此点击【文件】-【打开】-【数据】。 3、 选择excel数据,确认导入后,查看数据是否导入正常。 4、 第四步,进行相关性分析。依次点击【分析】-【相关】-【双变量】。
5、 然后,把变量从左侧选择到右侧变量框里面,勾选person相关,双侧检验等等。 6、 最后,点确定,相关性的结果就在输出文档里面了。你也可以把结果复制导出到word或者excel。
注意事项:分析前应检查缺失数据等。
spss 典型相关分析说明没有该文件存在,你是不是找错了?你直接打开SPSS启动文件然后把扩展名是。
标签: spss典型分析奇异性